CAR-T cell: an epitome for the cure of hematologic malignancies

Authors

  • Mohammad Afeef Department of Pharmacy, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, West Bengal, India
  • Shreya Bhattacharyya Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India

Keywords:

Chimeric T cell, ALL, NHL, CML, AML

Abstract

There is an increasing reliance on modern cancer therapies on immunotherapeutic approaches such as immune checkpoint inhibitors and adoptive cell therapy (ACT), which includes tumor-infiltrating lymphocytes (TILs), T cell receptor (TCR)-modified T cells, and chimeric antigen receptor (CAR). CAR-T cell therapy provides a unique approach to redirect T cells against distinct tumor antigens. It has generated widespread interest in oncology following several clinical successes in patients suffering from chemorefractory B cell malignancies. Since CAR-T cell therapy is a novel treatment, it does not have a clearly defined protocol. However, a rough protocol for CAR-T cell production is outlined in this article. The manufacturing of clinical-grade CAR-T cells under Current Good Manufacturing Practices (cGMP) is a very critical step in CAR-T cell production. However, this step has also become a bioprocessing bottleneck that needs to be surmounted for CAR-T cell therapy to reach a global patient population. CAR-T cells have a wide-ranging application in treatment of cancer. The first trials on B-ALL patients were conducted at MSKCC with conditioning chemotherapy of cyclophosphamide only. In case of CML patients, CAR-T cells that target the IL-1RAP protein have demonstrated the ability to selectively target the quiescent CML stem cells in various preclinical studies. Apart from CML, CAR-T cells can also be used to treat Acute Myeloid Leukemia (AML). For example, CD7 targeting CAR-T cells have shown effective cytotoxic effect against AML.

DOI: http://dx.doi.org/10.5281/zenodo.6512287

References

Kienle GS. Fever in cancer treatment: Coley's therapy and epidemiologic observations. Glob Adv Health Med. 2012; 1(1): 92-100.

Zander R, Cui W. The power of combining adoptive cell therapy (ACT) and pathogen-boosted vaccination to treat solid tumors. Hum Vaccines Immunother. 2017; 13(10): 2269-2271.

Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989; 86(24): 10024-10028.

Nair R, Neelapu SS. The promise of CAR T-cell therapy in aggressive B-cell lymphoma. Best Pract Res Clin Haematol. 2018; 31(3): 293-298.

Cheadle EJ, Sheard V, Hombach AA, Chmielewski M, Riet T, Berrevoets C, et al. eds. Chimeric antigen receptors for T-cell based therapy. In: Antibody Engineering 2012; pp. 645-666. Humana Press, Totowa, NJ.

Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res. 2017; 5(1): 1-6.

Rosenbaum L. Tragedy, perseverance, and chance - the story of CAR-T therapy. N Engl J Med. 2017; 377(14): 1313-1315.

Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014; 371(16): 1507-1517.

Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017; 377(26): 2531-2544.

Wang X, Rivière I. Manufacture of tumor-and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther. 2015; 22(2): 85-94.

Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011; 118(18): 4817-4828.

Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010; 116(20):4099-102.

Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011; 365: 725-733.

Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015; 7(303): 139.

Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin Oncol. 2015; 33(6): 540.

Turtle CJ, Berger C, Sommermeyer D, Hanafi LA, Pender B, Robinson EM, et al. Anti-CD19 chimeric antigen receptor-modified T Cell therapy for B cell non-Hodgkin lymphoma and chronic lymphocytic leukemia: fludarabine and cyclophosphamide lymphodepletion improves in vivo expansion and persistence of CAR-T cells and clinical outcomes. Blood. 2015; 126(23): 184.

Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014; 6(224): 25.

Warda W, Larosa F, Da Rocha MN, Trad R, Deconinck E, Fajloun Z, et al. CML Hematopoietic Stem Cells Expressing IL1RAP Can Be Targeted by Chimeric Antigen Receptor–Engineered T Cells. Cancer Res. 2019; 79(3): 663-675.

Pratap S, Zhao ZJ. Finding new lanes: Chimeric antigen receptor (CAR) T‐cells for myeloid leukemia. Cancer Rep. 2020; 3(2): e1222.

Vormittag P, Gunn R, Ghorashian S, Veraitch FS. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol. 2018; 53: 164-181.

Poorebrahim M, Sadeghi S, Fakhr E, Abazari MF, Poortahmasebi V, Kheirollahi, A, et al. Production of CAR T-cells by GMP-grade lentiviral vectors: Latest advances and future prospects. Crit Rev Clin Lab Sci. 2019; 56(6): 393-419.

Wang X, Rivière I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics. 2016; 3: 16015.

Singh H, Huls H, Kebriaei P, Cooper LJ. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical‐grade T cells to target CD 19. Immunol Rev. 2014; 257(1): 181-190.

Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C, et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother. 2009; 32(2): 169-180.

Casati A, Varghaei-Nahvi A, Feldman SA, Assenmacher M, Rosenberg SA, Dudley ME, et al. Clinical-scale selection and viral transduction of human naive and central memory CD8+ T cells for adoptive cell therapy of cancer patients. Cancer Immunol Immunother. 2013; 62(10): 1563-1573.

Odendahl M, Grigoleit GU, Bönig H, Neuenhahn M, Albrecht J, Anderl F, et al. Clinical-scale isolation of ‘minimally manipulated’cytomegalovirus-specific donor lymphocytes for the treatment of refractory cytomegalovirus disease. Cytotherapy. 2014; 16(9): 1245-1256.

Freimüller C, Stemberger J, Artwohl M, Germeroth L, Witt V, Fischer G, et al. Selection of adenovirus-specific and Epstein-Barr virus–specific T cells with major histocompatibility class I streptamers under Good Manufacturing Practice (GMP)–compliant conditions. Cytotherapy. 2015; 17(7): 989-1007.

Bashour KT, Larson RP, Graef P, Stemberger C, Lothar G, Odegard V, et al. Functional characterization of a T cell stimulation reagent for the production of therapeutic chimeric antigen receptor T cells. Blood. 2015; 126(23): 1901.

Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease. J Clin Oncol. 2016; 34(10): 1112-1121.

Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996; 272(5259): 263-267.

Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018; 558(7709): 307-312.

Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018; 24(10): 1499-1503.

Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018; 378(5): 439-448.

Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2019; 380(1): 45-56.

Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017; 25(1): 285-295.

Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019; 20(1): 31-42.

Magnani CF, Mezzanotte C, Cappuzzello C, Bardini M, Tettamanti S, Fazio G, et al. Preclinical Efficacy and Safety of CD19CAR Cytokine-Induced Killer Cells Transfected with Sleeping Beauty Transposon for the Treatment of Acute Lymphoblastic Leukemia. Hum Gene Ther. 2018; 29(5): 602-613.

Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997; 91(4): 501-510.

Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017; 543(7643): 113-117.

Rupp LJ, Schumann K, Roybal KT, Gate RE, Chun JY, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017; 7(1): 1-10.

Levine BL. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther. 2015; 22(2): 79-84.

Bajgain P, Mucharla R, Wilson J, Welch D, Anurathapan U, Liang B, et al. Optimizing the production of suspension cells using the G-Rex “M” series. Mol Ther Methods Clin Dev. 2014; 1: 14015.

Granzin M, Soltenborn S, Müller S, Kollet J, Berg M, Cerwenka A, et al. Fully automated expansion and activation of clinical-grade natural killer cells for adoptive immunotherapy. Cytotherapy. 2015; 17(5): 621-632.

Mock U, Nickolay L, Cheung GW, Zhan H, Peggs K, Johnston IC, et al. Automated Lentiviral Transduction of T Cells with Cars Using the Clinimacs Prodigy. Blood. 2015; 126 (23): 2043.

Gee AP. Manufacturing genetically modified T cells for clinical trials. Cancer Gene Ther. 2015; 22(2): 67-71.

Hourd P, Chandra A, Alvey D, Ginty P, McCall M, Ratcliffe E, et al. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products. Regen Med. 2014; 9(6): 799-815.

Campbell A, Brieva T, Raviv L, Rowley J, Niss K, Brandwein H, et al. Concise review: process development considerations for cell therapy. Stem Cells Transl Med. 2015; 4(10): 1155-1163.

Wang L, Gong W, Wang S, Neuber B, Sellner L, Schubert ML, et al. Improvement of in vitro potency assays by a resting step for clinical-grade chimeric antigen receptor engineered T cells. Cytotherapy. 2019; 21(5): 566-578.

Hartmann J, Schüßler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017; 9(9): 1183-1197.

Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012; 1(1): 1-7.

Davila ML, Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 2016; 104(1): 6-17.

Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends in Immunol. 2005; 26(2): 111-117.

Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013; 5(177): 38.

Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. The Lancet. 2015; 385(9967): 517-528.

Keating GM. Rituximab. Drugs. 2010; 70(11): 1445-1476.

Denlinger N, Bond D, Jaglowski S. CAR T-cell therapy for B-cell lymphoma. Curr Probl Cancer. 2021: 100826.

Chaganti S, Illidge T, Barrington S, Mckay P, Linton K, Cwynarski K, et al. British Committee for Standards in Haematology. Guidelines for the management of diffuse large B-cell lymphoma. Br J Haematol. 2016; 174(1): 43-56.

Kochenderfer JN, Somerville RP, Lu T, Yang JC, Sherry RM, Feldman SA, et al. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther. 2017; 25(10): 2245-2253.

Kochenderfer JN, Somerville RP, Lu T, Shi V, Bot A, Rossi J, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017; 35(16): 1803.

Schuster SJ, Svoboda J, Nasta SD, Chong EA, Winchell N, Landsburg DJ, et al. Treatment with Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019) Results in Durable Remissions in Patients with Relapsed or Refractory Diffuse Large B Cell Lymphomas of Germinal Center and Non-Germinal Center Origin,"Double Hit" Diffuse Large B Cell Lymphomas, and Transformed Follicular to Diffuse Large B Cell Lymphomas. Blood. 2016; 128(22): 3026.

Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017; 377(26): 2545-2554.

Kersten MJ, Spanjaart AM, Thieblemont C. CD19-directed CAR T-cell therapy in B-cell NHL. Curr Opin Oncol. 2020; 32(5): 408-417.

Westin JR, Kersten MJ, Salles G, Abramson JS, Schuster SJ, Locke FL, et al. Efficacy and safety of CD19‐directed CAR‐T cell therapies in patients with relapsed/refractory aggressive B‐cell lymphomas: Observations from the JULIET, ZUMA‐1, and TRANSCEND trials. Am J Hematol. 2021; 96(10): 1295-1312.

Locke FL, Neelapu SS, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Clinical and biologic covariates of outcomes in ZUMA-1: A pivotal trial of axicabtagene ciloleucel (axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (r-NHL). J Clin Oncol. 2017: 7512-7512.

Schuster SJ, Bishop MR, Tam C, Borchmann P, Jaeger U, Waller EK, et al. Sustained disease control for adult patients with relapsed or refractory diffuse large B-cell lymphoma: an updated analysis of Juliet, a global pivotal phase 2 trial of tisagenlecleucel. Blood. 2018; 132: 1684.

Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol. 2019; 10: 2040620719841581.

Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020; 396(10254): 839-852.

Maloney DG, Abramson JS, Palomba ML, Gordon LI, Lunning MA, Arnason JE, et al. Preliminary safety profile of the CD19-directed defined composition CAR T cell product JCAR017 in relapsed/refractory aggressive B-NHL patients: potential for outpatient administration. Blood. 2017: 1552-1552.

Mardiana S, Gill S. CAR T cells for acute myeloid leukemia: state of the art and future directions. Front Oncol. 2020; 10: 697.

Kenderian SS, Ruella M, Shestova O, Klichinsky M, Kim M, Soderquist C, et al. Targeting CLEC12A with chimeric antigen receptor T cells can overcome the chemotherapy refractoriness of leukemia stem cells. Biol Blood Marrow Transplant. 2017; 23(3): S247-248.

Ma H, Padmanabhan IS, Parmar S, Gong Y. Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol. 2019; 12(1): 1-11.

Liu F, Cao Y, Pinz K, Ma Y, Wada M, Chen K, et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial. Blood. 2018; 132: 901.

Cummins KD, Frey N, Nelson AM, Schmidt A, Luger S, Isaacs RE, et al. Treating relapsed/refractory (RR) AML with biodegradable anti-CD123 CAR modified T cells. Blood. 2017: 1359-1359

Budde L, Song JY, Kim Y, Blanchard S, Wagner J, Stein AS, et al. Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: a first-in-human clinical trial. Blood. 2017; 130 (Suppl. 1): 811.

Calabretta B, Perrotti D. The biology of CML blast crisis. Blood. 2004; 103(11): 4010-4022.

Dusetzina SB, Winn AN, Abel GA, Huskamp HA, Keating NL. Cost sharing and adherence to tyrosine kinase inhibitors for patients with chronic myeloid leukemia. J Clin Oncol. 2014; 32(4): 306-311.

Jiang Q, Liu ZC, Zhang SX, Gale RP. Young age and high cost are associated with future preference for stopping tyrosine kinase inhibitor therapy in Chinese with chronic myeloid leukemia. J Cancer Res Clin Oncol. 2016; 142(7): 1539-1547.

Warda W, Larosa F, Da Rocha MN, Trad R, Deconinck E, Fajloun Z, et al. CML Hematopoietic Stem Cells Expressing IL1RAP Can Be Targeted by Chimeric Antigen Receptor–Engineered T Cells. Cancer Res. 2019; 79(3): 663-675.

Järås M, Johnels P, Hansen N, Ågerstam H, Tsapogas P, Rissler M, et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci USA. 2010; 107(37): 16280-16285.

Ågerstam H, Karlsson C, Hansen N, Sandén C, Askmyr M, von Palffy S, et al. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc Natl Acad Sci USA. 2015; 112(34): 10786-10791.

Giavridis T, van der Stegen SJ, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018; 24(6): 731-738.

Zhang H, Hu Y, Chang AH, Huang H. Successful treatment of T315I BCR-ABL mutated lymphoid blast phase chronic myeloid leukemia with chimeric antigen receptor T cell therapy followed by dasatinib. Regen Ther. 2020; 14: 40.

Pan J, Yang JF, Deng BP, Zhao XJ, Zhang X, Lin YH, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia. 2017; 31(12): 2587-2593.

Fesnak A, O’Doherty U. Clinical development and manufacture of chimeric antigen receptor t cells and the role of leukapheresis. Eur Oncol Haematol. 2017; 13(1): 28-34.

Seimetz D, Heller K, Richter J. Approval of first CAR-Ts: have we solved all hurdles for ATMPs? Cell Med. 2019; 11: 2155179018822781.

Downloads

Published

05/02/2022

How to Cite

Afeef , M. ., & Bhattacharyya , S. . (2022). CAR-T cell: an epitome for the cure of hematologic malignancies. European Journal of Biological Research, 12(2), 114–140. Retrieved from http://jbrodka.com/index.php/ejbr/article/view/11

Issue

Section

Review Articles